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Аннотация. В статье рассматриваются способы автоматического анализа
мнений для оценки пользовательского опыта применительно к отзывам на проекты
в рамках онлайн-курсов по программированию на Python, Java и Kotlin, представ-
ленных на англоязычной образовательной платформе Hyperskill. В исследовании
описывается подход с опорой на методы анализа тональности и извлечения клю-
чевых слов, характеризующих отношение пользователей к изучаемым темам,
образовательному процессу и платформе в целом. Для определения тональности
отзыва и выделения ключевых слов используются алгоритмы VADER и RAKE-
NLTK соответственно. Исследование показало, что совмещение этих инструмен-
тов может считаться эффективным для определения настроений обучающихся.
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Введение

Люди никогда еще столько не писали: современное инфор-
мационное поле изобилует разными формами пользовательского
контента. Особенностью текстов, публикуемых в социальных ин-
тернет-сетях, микроблогах, на форумах, сайтах-агрегаторах или
официальных порталах компаний, является то, что они, как правило,
выступают маркерами общественного мнения о различных ново-
стях [Benrouba, Boudour, 2023], политических [Haselmayer, Dingler,
Jenny, 2022] и культурных событиях [A sentiment analysis approach …,
2018], но преимущественно – о приобретаемых товарах и услугах
[Mutinda, Mwangi, Okeyo, 2023]. По этой причине именно отзывы,
а точнее извлечение из них мнений и настроений пользователей,
попадают в фокус прикладных исследований, целью которых
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обычно становится принятие решений в отношении разрабатывае-
мых продуктов для бизнеса.

С ростом популярности онлайн-курсов моделирование поль-
зовательского опыта стало предметом интереса в сфере образова-
ния [Deng, Benckendorff, Gannaway, 2019] [Sentiment analysis on …,
2021] [Su, Peng, 2023]. Очевидно, что отслеживание эмоциональ-
ной окраски мнений, которые выражают обучающиеся в отноше-
нии пройденного курса, дает разработчикам образовательных про-
дуктов возможность определять зоны роста и, что немаловажно,
оценивать эффективность используемой методики обучения. При
этом отмечается, что целесообразным является ориентироваться не
только на количественную оценку, которую традиционно предла-
гают поставить курсу по завершении, но и на текстовые отзывы,
оставляемые обучающимися, – для выявления конкретных харак-
теристик продукта, которые вызвали соответствующее настроение
[Ngoc, Thi, Thi, 2021].

В компьютерной лингвистике выделяют класс методов кон-
тент-анализа, связанных с автоматической обработкой текстов для
извлечения информации из массива неструктурированных данных.
Задача анализа тональности (англ. sentiment analysis), или, как его
еще называют, анализа мнений (англ. opinion mining), заключается в
определении текста, выражающего мнение автора по поводу обсуж-
даемого в нем предмета, и характеристики этого мнения с позиций
содержания и эмоциональной валентности [Лукашевич, 2017, с. 127].

Целью настоящего исследования является изучение приме-
нимости методов анализа тональности для оценки пользователь-
ского опыта в сфере онлайн-образования. Кроме того, оценивается
эффективность использования ключевых слов для качественной
характеристики положительных и отрицательных впечатлений
обучающихся. Подчеркивая значимость учета пользовательского
опыта при разработке образовательных продуктов, далее мы рас-
смотрим комплексное применение методов анализа тональности и
выделения ключевых слов для извлечения полезной информации
из терминологически насыщенных текстов. Материалом выступят
«рефлексивные» отзывы обучающихся на онлайн-курсы по про-
граммированию.

Особенности материала обусловливают актуальность прово-
димого исследования. Повышение спроса на рынке труда на спе-
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циалистов, имеющих навыки работы с технологиями, которые по-
зволяют автоматизировать рутинные задачи с помощью про-
граммного кода в бытовой и профессиональных сферах, обеспечи-
вает успех IT-направления в онлайн-образовании. На сегодняшний
день область является точкой притяжения значительного количе-
ства людей, желающих расширить свои компетенции, что обеспе-
чивает высокий прирост пользовательского контента, быстрый и
эффективный анализ которого требует разработки специализиро-
ванных лингвистических инструментов.

Анализ тональности: описание
метода и существующих подходов

Существует несколько классификаций факторов, состав-
ляющих мнение. Из общего определения задачи анализа тонально-
сти выводятся следующие три: 1) субъект тональности, 2) тональ-
ная оценка и 3) объект тональности. Под субъектом тональности
понимается автор документа / высказывания, то есть тот, кто выра-
зил свое мнение в тексте. Характер выражаемого мнения с точки
зрения его эмоциональности составляет непосредственно тональ-
ную оценку. Наконец, мнение должно быть направлено на некото-
рую сущность (предмет), включая все ее свойства, аспекты; вместе
они представляют объект тональности [Пазельская, Соловьев,
2011, с. 511–512]. Таким образом, тональность текста складывается
из «лексической тональности составляющих его единиц и правил
их сочетания» [там же].

Принято выделять две группы методов для автоматического
определения тональности текста: лингвистико-инженерные и на
основе машинного обучения [Wankhade, Rao, Kulkarni, 2022]. От-
метим главные особенности каждой из этих групп алгоритмов.

Среди лексических методов, иначе именуемых лингвистиче-
скими или инженерно-лингвистическими, принято выделять подходы
на основе правил (rule-based approach) и подходы на основе словарей
(dictionary-based approach). В их основе лежит следующая логика:

1) необходимо составить словарь эмотивной лексики;
2) необходимо задать правила (лингвистические, контекст-

ные или логические) для определения тональной оценки некоторого
текстового фрагмента.
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Источниками обычно становятся уже существующие словари
оценочной лексики для целевого языка или подобные словари, но
переведенные с других языков машинным способом [Лукашевич,
2017, с. 148]. Каждому слову в словаре соответствует некоторая
тональная оценка. Слова из словаря сопоставляются со словами из
анализируемого текста, и затем присвоенные им оценки суммиру-
ются на уровне предложений и далее на уровне некоторого тексто-
вого фрагмента.

На этапе определения общей тональной оценки сегмента
применяются заданные системой правила, зачастую в соответствии
с логической моделью «если… то…». Так, анализируется, входит
ли слово в некоторое множество или нет. Например, «если цепочка
содержит глагол из списка (“любить”, “нравиться”, “обожать” и др.)
и не содержит глагола из другого списка (“ужасать”, “отвра-
щать” и др.) или отрицания, то ее тональность положительная»
[Хохлова, 2016]. Далее будет вычислена общая сумма весов для
проанализированного фрагмента.

Автоматическое определение тональности текста методами
машинного обучения традиционно относят к задаче классификации.
Среди известных алгоритмов наиболее часто используют метод
опорных векторов (SVM), наивный байесовский классификатор
[Parveen, Pandey, 2016], логистическую регрессию и градиентный
бустинг [Comparative study …, 2018].

Результаты применения методов как на основе словарей и
правил, так и на основе машинного обучения, сильно зависят от
предметной области [Koltsova, 2016]. В принципе, оба подхода
оказываются зависимыми от данных, которые были выбраны в ка-
честве ориентира. Тематическое разнообразие текстовой коллек-
ции, а также недостаточный размер обучающих данных, создание
которых само по себе является трудоемкой и дорогостоящей зада-
чей, могут негативно влиять на исход применения методов машин-
ного обучения [Лукашевич, 2022]. Лингвистико-инженерные под-
ходы, в свою очередь, наоборот, быстры, легко интерпретируемы и
не зависят от объема и качества исходной выборки [Zhang, Gan,
Jiang, 2014].

В отношении нейронных сетей, т.е. глубинного обучения,
несмотря на их высокую популярность на сегодняшний день, от-
мечают сложности при их обучении (повышенные мощности, долгое
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время обучения) и интерпретации результатов [Lexicon-based
methods …, 2022]. Стоит также учитывать языковые особенности –
как правило, для русского языка, требуется бо́льшая адаптация
модели. В связи с этим в последнее время выдвигается идея разви-
тия систем анализа тональности в сторону гибридных моделей,
сочетающих сразу несколько подходов [Birjali, Kasri, Beni-Hssane,
2021].

Основные направления исследований:
тематическая характеристика

На протяжении последних двух десятилетий анализ тональ-
ности активно применяется как основной или вспомогательный
метод для проведения исследований широкого тематического
спектра. Приведем несколько примеров исследований, отдавая
предпочтение работам социогуманитарной направленности.

В [Mutinda, Mwangi, Okeyo, 2023] обсуждаются польза ана-
лиза отзывов на товары и услуги для развития бизнес-сегмента, а
также новаторские технические решения для векторизации тексто-
вых данных для последующей классификации по сентименту. Так,
авторы представляют модель LeBERT, сочетающую лингвистиче-
ский подход (словари эмоциональной лексики и n-граммы) и тех-
нологии глубинного обучения (модель BERT и сверточные ней-
ронные сети). В ходе экспериментов на таких наборах данных, как
отзывы на товары, фильмы и рестораны с Amazon, IMDb и Yelp
соответственно, было обнаружено, что предложенная модель по-
зволяет достигнуть точности 88,73% (F-мера), превосходя другие
современные модели. Авторы приходят к выводу, что совмещение
лексического подхода и векторного представления слов позволяет
улучшить классификацию отзывов по тональности, что представ-
ляется особенно сложной задачей ввиду высокой разреженности и
размерности данных.

Отслеживание поведения потребителей актуально и для сфе-
ры туризма. В [Mehra, 2023] с применением методов аспектного
анализа тональности и анализа эмоций исследуется такое явление,
как культурный шок, называемое в работе в терминах эмоцио-
нального анализа «неожиданным удивлением» (англ. unexpected
surprise), которое, в свою очередь, может быть как позитивным
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(happy surprise), так и негативным (sad surprise). В качестве мате-
риала выбраны комментарии в социальных сетях, оставленные ту-
ристами, преимущественно американцами и европейцами, после
совершения поездок в Индию, Китай и Объединенные Арабские
Эмираты (ОАЭ). Обсуждается влияние опыта, полученного во
время путешествия, на характер реакции туристов в социальных
сетях постфактум. Результаты могут помочь менеджерам в области
туризма предвосхищать реакцию клиентов на особенности, моти-
вированные культурой места назначения.

Жанр социальных медиа представляет интерес не только для
прогнозирования востребованности предлагаемых заказчиками
продуктов и услуг, но и в контексте ограничения негативного влия-
ния некоторых сообщений на психическое здоровье пользователей.
В [Benrouba, Boudour, 2023] предлагается подход к фильтрации
потенциально вредного с точки зрения эмоционального воздействия
контента на примере постов в Twitter. После определения списка
эмоциональной лексики, состоящего из 450 слов английского языка,
тексты классифицировались на предмет соответствие одному из
пяти эмоциональных состояний (радость, печаль, гнев, страх, от-
вращение) и общей полярности (положительная или отрицательная).

Особенно популярным подобный материал – твиты – явля-
ется в области политики, где на его основе строятся предсказания
исходов выборов, оценивается влияние пиар-кампаний, составля-
ется портрет государственных деятелей в глазах общества. В [Sen-
timent analysis on Twitter …, 2022] рассматриваются такие методы
анализа тональности, как BERT, наивный байесовский классифи-
катор и GerVADER. Сравнение осуществляется применительно к
58 000 постов немецких политиков и партийных аккаунтов, остав-
ленных в период выборов 2021 г. в германский Бундестаг. По ито-
гам исследования было установлено, что негативные настроения
характеризовали периоды до и после выборов, а также то, что по-
сты оппозиционных партий в среднем оказывались более негатив-
ными, чем у правящих партий. Наибольшей точностью отличалась
модель-трансформер BERT, превосходя традиционные методы
машинного обучения и подходы на основе словарей и правил.
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Парадигма «пользователь – продукт» в контексте
моделирования образовательного опыта

Первый массовый онлайн-курс (Massive Open Online Courses,
MOOC) появился в 2008 г. [Daniel, 2012]. Долгое время к подоб-
ному формату относились скорее как к угрозе «традиционному»
обучению в классе. Однако с 2019 г., периода пандемии, ценность
онлайн-образования стремительно возросла [Dalipi, Zdravkova,
Ahlgren, 2021].

В продуктовой аналитике под пользовательским опытом
(англ. user experience) понимается совокупность впечатлений и
ощущений от взаимодействия человека с цифровым артефактом
[Law, Van Schaik, 2010]. Отмечается, что удобство использования
платформы обладает значимостью и в сфере онлайн-образования,
являясь неотъемлемой частью процесса обучения, влияющей на
его эффективность [Ovaska, 2013]. Однако пользовательские впе-
чатления в контексте онлайн-образования характеризуются более
сложной структурой: так, участник курса выступает не только как
пользователь, но и как студент. Иными словами, пользователь ока-
зывается также экспериенцером и учебного опыта (англ. learning
experience), в рамках которого в ходе использования цифрового
продукта он изучает дидактические материалы, получает новые
знания и навыки.

Специфика контекста обучения приводит к качественной
модификации отзывов, традиционно используемых для оценки
пользовательских настроений. Оставляемый по итогам прохожде-
ния онлайн-курса студенческий фидбэк может расцениваться как
рефлексия над опытом обучения на платформе, особая форма его
фиксации в информационном поле, из которого был изъят второй
участник коммуникации – преподаватель. Успешность цифрового
образовательного продукта оказывается в значительной мере зави-
сящей не столько от формата изложения материала, сколько от его
проработанности и подробности инструкций по выполнению ин-
терактивных заданий.

В этой связи подчеркивается, что ввиду специфики контек-
ста обучения авторы онлайн-курсов должны при их разработке и
улучшении принимать во внимание оставляемый студентами фид-
бэк [Ngoc, Thi, Thi, 2021]. Моделирование учебного опыта пользо-
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вателей, в частности предсказание того, вернутся ли они к курсу,
порекомендуют ли его, а также выявление факторов (например,
лектор, материал, структура и др.), которые были сочтены успеш-
ными или, наоборот, помешавшими прохождению, может быть
осуществлено с применением методов анализа тональности.

Как отмечают [Dalipi, Zdravkova, Ahlgren, 2021], фокус ис-
следований в области оценки эффективности образовательных
курсов смещается на апробацию методов анализа тональности в
2019–2020 гг. Так, сравниваются подходы на основе машинного
обучения и NLP-инструменты, эксплуатирующие в основном под-
ходы на основе правил и словарей. Интересным направлением так-
же становится комбинация тематического моделирования и сенти-
мент-анализа. После 2019 г., как указывают [Dalipi, Zdravkova,
Ahlgren, 2021], наряду с использованием машинного обучения и
методов автоматической обработки естественного языка в рамках
задачи сентимент-анализа образовательных курсов начинают ак-
тивно использоваться архитектуры глубинного обучения – такие
нейронные сети, как CNN, LSTM, BERT и RNN.

Например, в [Explowing learner engagement …, 2019] обсужда-
ется применение таких алгоритмов, как латентное размещение Ди-
рихле (Latent Dirichlet Allocation, LDA) и латентно-семантический
анализ (Latent Semantic Analysis, LSA) для выявления тем, встре-
чающихся в текстах на образовательных форумах, с последующим
сопоставлением тональных оценок, характерных для каждой из
обнаруженной тем. Это позволило определить, что обсуждают
обучающиеся на подобных площадках и как они взаимодействуют
друг с другом.

Перспективными в заданной области кажутся работы, в ко-
торых используется словарный подход для определения полярности
текста, а затем осуществляется валидация результатов с примене-
нием машинного обучения. В [Opinion mining …, 2021] описыва-
ется способ формирования словаря тональной лексики, характер-
ной для образования: авторы анализируют наиболее частотные
слова, характеризующие мнения, которые встречаются в отзывах
анализируемой выборки. Это решение во многом мотивировано
спецификой тех онлайн-курсов, которые подвергаются анализу, –
онлайн-курсов по машинному обучению. Так были сформированы
списки слов – как положительных (good, useful, excellent, easy и др.),
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так и отрицательных (boring, short, problem, hard и др.), которые
затем были использованы для классификации отзывов. Предло-
женная модель применялась для идентификации лучшего среди
лекторов анализируемых онлайн-курсов.

Материал и методика исследования

В качестве материала исследования были выбраны отзывы
на учебные проекты в рамках онлайн-курсов по программирова-
нию на образовательной платформе Hyperskill от JetBrains
Academy1. Особенностью обучения на платформе является реали-
зуемый подход, напоминающий концепцию learning-by-doing, или,
как его называют сами разработчики, project-based learning [Орлова,
2019]. Так, в рамках каждого трека, предполагающего изучение
одного из языков программирования (Python, Java, Kotlin, Scala
или Go), пользователю предлагается выполнить ряд проектов от
простых к сложным. Каждый проект направлен на решение одной
практической задачи (например, построение небольшого чат-бота).
По мере прохождения стадий проекта обучающийся изучает необ-
ходимые для этого теоретические темы, выполняет задания и, на-
конец, пишет полноценную программу на изучаемом языке про-
граммирования.

По завершении проекта пользователю дается возможность
описать результаты проделанной работы, поделиться впечатле-
ниями от обучения и взаимодействия с платформой в целом. От-
зывы на платформе бывают нескольких видов: рефлексии на ре-
зультаты обучения в рамках проекта (рис. 1) и фидбэки на проект
(рис. 2). Помимо этого, пользователя также просят выставить
оценку проекту по пятизвездочной шкале по трем критериям: по-
лезность (usefulness), понятность (clarity) и веселость (fun).

1 Hyperskill. JetBrains Academy – Learn programming by building your own
apps. URL: https://hyperskill.org/

https://hyperskill.org/
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Рис. 1. Пример рефлексии (проект Web Scraper, трек Python Core)

Рис. 2. Пример фидбэка (проект Web Scraper, трек Python Core)
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Если говорить об образовательном курсе как о некотором
продукте (или услуге), то функционально отзывом на него на
платформе Hyperskill является именно публичная рефлексия1: это
то, что посетители сайта видят в секции с отзывами под каждым
проектом (рис. 3). Опубликованный отзыв также сопровождается
оценкой, которую выставил пользователь проекту – это среднее
значение оценок полезности, понятности и веселости.

Рис. 3. Пример публичной рефлексии (проект Web Scraper, трек Python Core)

Для анализа пользовательского опыта именно этот тип отзы-
вов будет представлять интерес, так как сформулированный для
пользователя вопрос (Think about what you’ve learnt in the project) и
сопроводительный текст подталкивают его вспомнить о том, что
он изучил, и оценить как положительные, так и отрицательные
стороны своего опыта.

Материалом исследования стали 28 624 публичных рефлек-
сии (далее – отзывы) на проекты в рамках треков по изучению Py-
thon, Java и Kotlin, опубликованные с июня 2019 по февраль
2023 г. (табл. 1). Из них с помощью регулярных выражений были
отобраны 27 584 отзыва, написанных на английском языке. Итого-
вый объем выборки составил 816 545 токенов.

1 Пользователь может запретить публикацию рефлексии; тогда она, как и
фидбэк (по умолчанию), будет видна только разработчикам.
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Таблица 1.
Материал исследования: количественные характеристики

ОбъемЯзык программирования
В проектах В отзывах В токенах

Python 25 17 077 503 355
Java 10 2 408 239 360
Kotlin 7 8 099 73 830
Итого 42 27 584 816 545

Помимо собственно текстов отзывов и ID проекта, на который
он был оставлен, также выгружалась внутренняя информация о дате
публикации и оценках, поставленных пользователем (табл. 2).

Таблица 2.
Пример выгрузки отзывов с метаданными

language project_id date text clarity fun useful-
ness

Python 98 23.02.
2020

This is pretty basic stuff
that I already know,
except for regular ex-
pressions, which were
new to me. The only
exercise which was
rather difficult was the
XOR exercise.

4 4 4

Рис. 4. Облако частотных слов и словосочетаний (на материале всех отзывов)
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Как видно из рис. 4, пользователи, действительно, затрагивают
в отзывах темы, соответствующие аспектам их образовательного
опыта (learn, understand, code, practice, think, problem, work и т.д.).

Средняя длина отзыва составила 29,6 токенов; от проекта к
проекту значение этого параметра варьируется от 22 от 35 токенов
(рис. 5). В связи с этим можно предположить, что хотя содержа-
тельно исследуемые отзывы отличны от конвенциональных форм
выражения пользовательского мнения, но по формальным харак-
теристикам они имеют пересечения.

Рис. 5. Средняя длина отзыва (для каждого проекта)

Мы будем рассматривать отношение обучающихся к проекту в
целом, а также к пройденным темам, образовательному процессу и
платформе, извлекая сентимент и ключевые термины из каждого от-
зыва по-отдельности с помощью алгоритмов VADER (https://pypi.org/

https://pypi.org/project/vaderSentiment
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project/vaderSentiment) и RAKE-NLTK (https://pypi.org/project/rake-nltk)
соответственно. Кратко охарактеризуем используемые методы.

VADER (Valence Aware Dictionary for sEntiment Reasoning) –
инструмент с открытым кодом, принцип работы которого сочетает
использование словаря и правил для вычисления результирующей
тональности с учетом полярности и интенсивности ее выражения
[Hutto, Gilbert, 2014]. Словарь, используемый в VADER, насчитывает
7520 единиц, включая не только собственно тонально-окрашенную
лексику, но и обширный список эмотиконов в западном стиле, а
также акронимы и сленговые выражения, характерные для компью-
терно опосредованной коммуникации [Hutto, Gilbert, 2014]. В табл. 3
представлен фрагмент используемого лексикона.

Таблица 3.
Примеры тонально-окрашенных словарных единиц

из VADER-лексикона

Токен Средняя тональная
оценка

Стандартное
отклонение

Экспертные оценки

difficultly -1.7 0.45826 [-1, -2, -1, -2, -2, -1, -2, -2, -2, -2]

clear 1.6 1.2 [2, 1, 1, 0, 3, 1, 2, 4, 2, 0]
thankfully 1.8 0.6 [2, 1, 2, 1, 2, 3, 2, 2, 1, 2]
meh -0.3 0.78102 [-1, 0, -1, 0, -1, -1, 1, 0, 1, -1]
wtf -2.8 0.74833 [-4, -3, -2, -3, -2, -2, -2, -4, -3, -3]
:-)) 2.8 1.07703 [3, 4, 4, 1, 2, 2, 4, 2, 4, 2]

После сопоставления токенов исследуемого фрагмента с на-
личествующими в словаре лексическими единицами используется
ряд правил, позволяющих адаптировать тональную оценку под
влиянием контекста. В отличие от моделей «мешка слов» (англ.
bag-of-words) алгоритм VADER учитывает порядок слов, опреде-
ляя отношения между модификаторами степени, выраженными
наречиями меры и степени [Hutto, Gilbert, 2014]. В качестве при-
меров таких «слов-бустеров» можно привести absolutely,
amazingly, fracking, fuckin, most, remarkably как повышающие то-
нальность стоящего после слова и almost, barely, marginally, kindof,
kind-of – как понижающие. Как видно, перечень включает в себя
модификаторы разной стилистической окраски (ср. remarkably –
fuckin) и варианты их написания (ср. kindof – kind-of). Кроме того,

https://pypi.org/project/vaderSentiment
https://pypi.org/project/rake-nltk
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как влияющие на тональную оценку сло́ва рассматриваются наме-
ренное изменение регистра, нестандартные случаи оформления
пунктуации и контексты отрицания; учитывается вероятность ис-
пользования эмоционально-окрашенной лексики в идиомах.

Значение compound, представляющее собой собственно то-
нальную оценку, вычисляется как сумма оценок слов из лексикона
после применения правил:

,

где  – это сумма валентных оценок (valence scores), за-
дающих для слова полярность и интенсивность сентимента по
шкале от -4 до +4; ∝ – нормализующая константа.

Нормализованная взвешенная тональная оценка принимает
значения в промежутке от -1 до +1. Чем выше тональная оценка,
тем более положителен текст, и наоборот. Для преобразования
количественного ответа в категориальный обычно используются
следующие пороговые значения [Hutto, Gilbert, 2014]:

· compound >= 0.05à позитивная тональность;
· compound > -0.05 и compound score < 0.05 à нейтраль-

ная тональность;
· compound <= -0.05à негативная тональность.
По результатам предыдущих исследований точность

VADER применительно к похожим по формату на анализируемые
в настоящем исследовании тексты – посты в Твиттер – составила
72% [Al-Shabi, 2020]. Кроме того, во время экспериментов на на-
шем материале библиотека VADER не только позволяла получить
более разнообразные оценки и эмпирически сопоставимые с об-
щей тональностью текстов, но и лучше улавливала негативный
сентимент в отзывах значительной длины.

RAKE (Rapid Automatic Keyword Extraction) – один из алго-
ритмов для извлечения ключевых слов [Automatic keywords extrac-
tion …, 2010]. Его особенностью можно назвать понимание клю-
чевых слов как ключевых фраз, характеризующих текст. Так,
принцип работы связан со следующим наблюдением: длина клю-
чевой фразы, как правило, больше единицы, при этом в ее состав
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редко попадают пунктуационные знаки и стоп-слова – слова, об-
ладающие минимальной лексической ценностью. В этой связи
при формировании списка содержательных слов (content words)
алгоритм оценивает позицию стоп-слов и пунктуационных зна-
ков, заданных пользователем, и, разбивая на основе этих списков
предложения на фразы, определяет кандидаты в ключевые слова
(candidate keywords).

В настоящей работе алгоритм применяется для категориза-
ции понятий и терминов, используемых пользователями при остав-
лении фидбэка. Для выделения ключевых слов нами используется
метрика отношения степени слова к частотности (deg(w) / freq(w)),
которая позволяет выделять слова, главным образом встречаю-
щиеся в более длинных кандидатах в ключевые слова. Использо-
вание именно этого метода обусловлено необходимостью работы с
каждым отзывом по отдельности, что представляется релевантным
при совмещении задач анализа тональности и извлечения ключе-
вых слов, на которые направлен проводимый эксперимент.

Результаты и их оценка

В результате анализа были получены данные о средней то-
нальной оценке и количестве положительных и отрицательных
отзывов (в абсолютных и относительных значениях) для каждого
образовательного проекта. Для отнесения отзыва в соответствую-
щую категорию были использованы пороговые значения, предло-
женные в [Hutto, Gilbert, 2014] и описанные выше. Всего автома-
тически удалось разметить 23 251 отзыв, что составило 84% от
общего объема выборки. Из них 19 786 отзывов были оценены как
положительные, 3 429 – как отрицательные.

В табл. 4 приводятся примеры положительных и отрицатель-
ных отзывов. Как видно, VADER хорошо справляется со смешанным
сентиментом в отзывах средней длины. Правильность назначенной
метки, характеризующей полярность отзыва, устанавливалась эмпи-
рически.
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Таблица 4.
Примеры размеченных по тональности отзывов

Образовательный
проект

Текст отзыва com-
pound

Метка

3_Coffee Machine Basic of java is quite clear.
Felt happy.
Questions standard is pretty good

0.9179 pos

7_Coffee Machine Really interesting, useful and funny project.
Good for learning the OOP.

0.8995 pos

8_Zookeeper Very good project to start if you're a begin-
ner. This is sure crack your head at While
Loop lol

0.807 pos

9_Text-Based
Browser

It's very useful to project to learn about
many things, but sometimes test cases are
nonsense and summary of the problem is
very hard to follow

-0.7931 neg

8_Zookeeper FUCKING TRASH BULLSHIT
STUPID IDE
FUCK YALL STUPID JETBRAINS PRO-
GRAMMERs
FUCCCK!!!!!!!!!!!!!!

-0.9723 neg

Для определения того, о чем говорится в отзывах, из каждого,
где возможно, извлекались по пять ключевых слов. Минимальная
длина ключевой фразы была задана равной 1, максимальная – 3.
Пример размеченного таким образом отзыва приводится в табл. 5.

Таблица 5.
Пример отзыва с извлеченными из него ключевыми словами

Образова-
тельный
проект

Текст отзыва Compound Ключевые слова

42_Smart
Calculator

I had get closer experience with
2 important data structures: the
stack and the queue

0.2023 stack

42_Smart
Calculator

I had get closer experience with
2 important data structures: the
stack and the queue

0.2023 queue

После этого из общего списка ключевых слов вручную от-
бирались те, которые действительно отсылают к определенным
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сущностям объекта тональности в соответствии с тремя катего-
риями:

· темы (a_topic) – отсылает к темам, изученным пользова-
телями во время прохождения проектов (модули, методы, библио-
теки, пакеты и проч.), например: boolean type, loops, split, class at-
tributes, sys module, string, nested lists, socket, emuns, mutable lists,
arrays, math library, oop;

· процесс обучения (a_learning_process) – включает в себя
все, что связано с изучением тем и выполнением заданий (этапы
работы над проектом (в терминах Hyperskill – стадии), описание
заданий, тестовые случаи для проверки кода); например: final
stage, solution, solve problems, lessons, first steps, tutorial, questions,
description, examples, test cases, code editor, hints helped, correct so-
lution;

· платформа (a_platform) – то, что связано с платформой и
ее организацией в целом (используемая методика, упоминания
платформы / разработчиков, скорость работы сайта / IDE, стои-
мость подписки); например: jetbrains academy, many thanks, study
plan, topics covered, native language, website, hyperskill team, step
approach.

Всего получилось определить 981 ключевое слово, отсы-
лающее к разным частям пользовательского опыта. Из них к кате-
гории a_topic были отнесены 577, к a_learning_process – 309 и к
a_platform – 95. Извлеченные ключевые слова в основном соответ-
ствовали следующим частеречным паттернам: ADJ + NOUN (252
ключевых слова), NOUN (208), NOUN + NOUN (131), VERB,
NOUN (116).

Наконец, каждый отзыв, если в нем упоминался аспектный
термин, был сопоставлен с соответствующей категорией. Количе-
ственные показатели, приводимые в табл. 6 на примере проекта
Zookeeper, были получены в двух вариантах: для всех проектов,
сгруппированных по изучаемому языку программирования, и для
каждого проекта по отдельности.
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Таблица 6.
Распределение ключевых слов по положительным и

отрицательным отзывам (на примере проекта 98_Zookeeper)

Количество вхождений в отзывы

положительные отрицательные

Категория

Средняя
тональная
оценка Абс. % Абс. %

Итого

Процесс
обучения 0,40 1545 83,65 302 16,35 1847
Платформа 0,55 656 91,24 63 8,76 719

Темы
0,34

1491 84,81 267 15,19 1758

Итого 3692 632 4324

В отношении первого набора данных можно сделать сле-
дующие наблюдения:

1) категория «процесс обучения» встречается в отзывах, в
которых превалирует положительная лексика, оставленных на
проекты в первую очередь по Kotlin (86,88% от общего числа от-
зывов, в которых встречается соответствующие термины) и Java
(86,69%), для проектов по Python это значение несколько меньше –
84,79%.

2) категория «платформа» упоминается в наиболее поло-
жительных контекстах в отзывах на проекты по Kotlin (96%), за-
тем идут проекты по Java (93,35%) и, наконец, Python (91,28%);

3) категория «темы» входит в значительное количество от-
зывов на Kotlin (86,98%), затем следуют Python (85,17%) и Java
(84,99%).

Таким образом, можно предположить, что наиболее положи-
тельно оценивают свой опыт пользователи, проходившие обучение
на платформе Hyperskill по языку программирования Kotlin. При
этом наибольшее количество упоминаний проблем с платформой
встречается в отзывах на проекты в рамках онлайн-курсов по Py-
thon. Интересно, что в наименее положительных контекстах упо-
минаются темы, которые изучаются в рамках трека по Java.

Что касается распределения ключевых слов по положитель-
ным и отрицательным отзывам для каждого проекта, то здесь
можно прослеживать «входимость» ключевых слов в отзывы
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определенной тональности. На рис. 9 приводится пример распре-
деления самых показательных положительных и отрицательных
терминов по аспектам для проекта Zookeeper (трек Python Core).

Рис. 9. Наиболее положительные и отрицательные ключевые термины
по категориям «процесс обучения», «платформа», «темы»

(на примере проекта 98_Zookeeper)

Так, в процессе обучения позитивный опыт составляют пра-
вильность решения задач (correct solution), понятные объяснения
материала и заданий (good examples, theoretical part, task descrip-
tions), а негативный – проверка решений с помощью редактора кода
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(code editor) и трудности на последнем этапе проекта (final step /
stage). Пользователи, прошедшие проект Zookeeper, судя по всему,
не имели значительных проблем с платформой (кроме того факта,
что она является англоязычной). Самыми сложными темами ока-
зались форматирование строк (string formatting), работа с команд-
ной строкой (command line), а в позитивных контекстах упомина-
лись списковые включения (list comprehension), булевые значения
(boolean values), условные операторы (elif statements).

Перейдем к оценке полученных результатов. Для анализа ка-
тегорий пользовательского опыта, полученных на основе извле-
ченных ключевых слов, была проведена разметка части данных
тремя экспертами, ранее имевшими опыт программирования и озна-
комленными со спецификой задачи анализа тональности. Для каждо-
го аннотатора на основе всех данных были сформированы выборки
по 500 отзывов, отобранных случайным образом по следующим
критериям:

1) отзывы должны быть на английском языке;
2) в выборке должны присутствовать отзывы разной длины:

средней и выше / ниже среднего;
3) соблюдается пропорциональное соответствие «представ-

ленности» языков программирования в выборке реальным данным.
Так, в каждую выборку вошли по 360 отзывов на проекты по

Python, по 100 – по Java и 40 – по Kotlin. Суммарный объем разме-
ченных данных составил 1500 отзывов.

Разметка осуществлялась с помощью doccano1 – открытого
инструмента для аннотирования данных, применяемого для широ-
кого спектра задач обработки естественного языка. Характеристика
категорий в задании для аннотаторов соответствовала представ-
ленной выше. Кроме того, необходимо было разметить оценочные
слова, которые характеризуют категорию положительно (тег
s_positive) или негативно (s_negative), хотя не привязаны к какой-
либо конкретной сущности, но описывают общие впечатления
пользователя от обучения. Пример размеченного отзыва представ-
лен на рис. 10.

1 https://github.com/doccano/doccano

https://github.com/doccano/doccano
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Рис. 10. Пример аннотирования отзыва в doccano

В соответствии с табл. 7 в результате экспертной разметки
получены 1537 ключевых слов, в то время как автоматически уда-
лось определить 981, что составляет 63,83% от «золотого стандарта».

Таблица 7
Сравнение количества извлеченных терминов

автоматически и вручную

Количество извлеченных ключевых словКатегория

автоматически вручную

Доля автоматических от
экспертных, %

Процесс
обучения

309 621 49,76

Платфор-
ма

95 117 81,20

Темы 577 799 72,22

Итого 981 1537 63,83

Если сравнивать по категориям, то наибольшая эффектив-
ность автоматического извлечения на основе методов ключевых
слов достигнута для категорий «платформа» (81,20%) и «темы»
(72,22%). Вероятно, ввиду разнообразия форм выражения катего-
рия «процесс обучения» оказалась самой сложной для формирования
машинным способом.
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Заключение

Извлечение мнений и настроений из пользовательского кон-
тента помогает бизнесу принимать решения в отношении разраба-
тываемых продуктов. В последнее время в спектр подобных задач
все чаще попадают отзывы, оставляемые обучающимися на раз-
личные онлайн-курсы.

В статье была представлена идея анализа тональности на ос-
нове категоризации ключевых слов, извлеченных автоматически,
для оценки пользовательского опыта применительно к тематиче-
ски специфичным отзывам-рефлексиям на прохождение проектов
по изучению языков программирования. Результаты исследования
позволили нам охарактеризовать отношение пользователей Hyper-
skill к изучаемым темам, образовательному процессу и платформе.
Оценив качество автоматической разметки, можно установить, что
состав таких категорий, как «платформа» (81,20%) и «темы»
(72,22%), наиболее соответствует ключевым словам, выделенным
вручную.

Таким образом, подход к анализу тональности пользователь-
ских отзывов на онлайн-курсы по программированию с примене-
нием методов извлечения ключевых слов для выявления ключевых
слов можно считать достаточно эффективным для обобщения впе-
чатлений от онлайн-образования. Использование ключевых слов,
как было продемонстрировано на примере проекта Zookeeper, по-
зволяет определять проектно-зависимые факторы, влияющие на
отношение пользователей к процессу обучения.

В продолжение исследования, во-первых, представляется
целесообразным провести серию экспериментов, направленных на
аспектно-ориентированный анализ тональности, то есть с учетом
контекстных оценочных слов, выделенных в ходе экспертной раз-
метки (a_positive, a_negative), и выявления отношения пользовате-
лей к конкретным сущностям. Во-вторых, может быть перспектив-
ным использование для определения эмоциональной валентности
отзыва «взвешенных» тональной и пользовательской оценок. Также
для автоматизации суммаризации пользовательского опыта на на-
шем материале потенциально интересна апробация методов тема-
тического моделирования.
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